THE NUMERICAL SOLUTION OF RADIATIVE HEAT
TRANSFER FOR GREY BODIES IN AN ABSORBING MEDIUM

Yu. A. Surinov and V. E. Fedyanin UDC 536.3

A new approximate analytical method for solving the integral radiation equations [1, 2] is
used for the numerical calculation and investigation of the local and average characteris-
tics of radiative heat transfer in systems of grey bodies separated by an isothermal ab~
sorbing medium.

The Solution of the Mixed Two-Dimensional Problem of Radiative Heat Transfer in a Chamber of
Rectangular Cross Section. A chamber of rectangular cross section of infinite length consists of three
optically homogeneous bounding grey bodies (one at each end with degrees of blackness Ay, A,, and an
adiabatic one in the middle with surface Qpeg,s = Epeg, oF2 = 0) separated by an isothermal absorbing me-
dium with given temperature T, and coefficient of volume absorption «. In addition the geometrical di-
mensions of the chamber and the temperatures of the ends T; and T; are defined.

It is required to determine the field of values of the surface density of the resulting radiation from
the ends Epes (Mj)M; € F; (i = 1,3) and the temperature field T(M,) of the lateral surface F, of the chamber.

The fundamental computational equations and expressions in the most general nondimensional form
in this case are [3]:

0 s (My)= Ere;:(Mﬂ =4 [QI (My, V) + A0, ¥ (M, Fa)], (1)
0
Oues ()= Es L ar i, V) — [1 = A (O, 7] 84 @
a
T (My)— T
0(M,) = (T%__“?Ti =1—UA(M,, V)—A0,,¥ (M,, F), (3)
4

where 6y = (T4 — T4/ (T4 — T%).
In Eqgs. (1)-(3) A(Mj, V) is the local resolving absorptivity of the medium, [4]
AM;, V)=1—AYM;, F)—AY M, F) (M;€F, i=1, 2, 3. (4

If in (4) we make the subscript i take the values 1, 2, 3, in turn we obtain

UMy, V)= 1—AY (M, F)—A¥ (M, F)) (M,CF), ®
QX(MZ, V) =1 —Aiqr (sz Fl) “‘A:sIF (Mz» Fg) (Mzer)y (6)
%[(Ms, V) =1 "—Aﬂp (Ms» Vi) - A31F (M3’ Fs) (Ms EFs)- (7)

Expressions for the average resolving absorptivities of the media U;(V) (i = 1, 2, 3) can easily be ob-
tained from expressions (4)-(7) for % (M;, V) by replacing in them the local resolving angular radiation co-
efficients ¥(M;, F ) by the corresponding average resolving angular coefficients ¥;p- In turn replacing
the functions U (Mj, V), ¥(M;, Fp) by the corresponding A{(V), ¥ip in Egs. (1)~(3) makes it possible to ob-
tain computational expressions for the average nondimensional boundary radiation characteristics 6 res, i
Ores,3, and 6.
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Fig. 1. Local resolving absorptivity of the medium as a
function of x/a (I) and of z/b (II) for various values of a:
1) M, V), u My, V), Ay = A5 =1.0; 2)-u(My, V); 3)
UMy, V) [2and 3) A; = 0.3,A; = 0.7]; I: 1)~ U(M,, V), Ay
=A3=1.0;2)A, =03,A; =0.7.

For a radiating system which is a chamber of rectangular cross section with plain ends Fy and Fj,
the local and average generalized angular coefficients of self-radiation are zero (y(M;, Fy) = ¢ (M, Fs)
=iy = Pg3 = 0), and the coefficients of repeated reflection are vy, = v; = 1. Hence the computational equa-
tions for determining the local resolving angular radiation coefficients obtained in [1] can be simplified
and take the form:

DY (M,, F)) =1;, (14 Rabis) ¥ (My, Fy) + Ry (s + $uathp) ¥ (M, F), (8)
DY (My, Fi) = (1 — Rypustpi) b (M, F)

1y, (1 Ry W (M, Fy) = Ry (g + byathy) b (My, Fy), )

DY (M,, Fy) = (1 — Rabygp) ¥ (Mg, Fy) by (1 ++ Rypu) § (M, Fo), (10)

DY (My, F3) = 3, (1 + Ry (My, Fy) + (1 — Rypysty) b (M, Fy), (11)
D¥ (My, F3) = Ry (bys -+ 0uhy) b (M, Fy)

) (1 Rybug) ¥ (My, Fo) + (1 — Rybyoy) 0 (M, Fy), (12)

DY (My, Fs) = Ry (g + Prabs) 0 (My, Fy) 95 (1 Rypyy) 0 (M, Fy), (13)

D = 1— RyRy;3 (5 + 2b,50;) — Byotby, (Ry + Ry), (19

where the R are the coefficients of reflection R =1 —Ay), k=1, 3; U9y = Yot/ (1 — Pgy) is the effective
generalized average angular radiation coefficient from the lateral surface F, on the base F; of the chamber
(a surface F, consists of two parallel unbounded strips).

From the symmetry of the radiating system (a chamber of rectangular cross section) it follows that
d(My, Fg) = (Mg, Fy), My, Fy) = (M3, Fy) for similar points My and M3 $(M,, F;) = $(M,, F;) for the points
M, symmetrically placed with respect to the axis of symmetry. For the average angular radiation coef-
ficients we have respectively: 43 = ¥g1, o1 = Pg3, P39 = P19, P9y = 0.

The generalized local and average angular radiation coefficients for a chamber of rectangular cross
section (/b = 0.5) were determined using the approximate method of Mikk [5, 6] for various values of the
coefficient of volume absorption (¢ = 0.1, 0.5, 1.0). The local resolving angular radiation coefficients w(Mj,
Tk) were computed from Egs. (8)-(14) for the following values of the coefficients of reflection Ry =R3 =10
and Ry = 0.7, Ry = 0.3.
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Fig. 2. The nondimensional density of the resulting ra~
diation as a function of x/a (left) and the nondimensional
temperature factor as a function of x/b (right) for vari-
ous values of a: Ores,s =05 03y =1.05; 1) A; =A; =1.0; 1)
A;=0.3, A; =0.7.

The results of the numerical calculations of the fundamental local characteristics of radiative heat
transfer are shown in Figs. 1, 2. Figure 1 shows the graphical relations between the local resolving ab-
sorptivity of the media % (Mj, V) and the nondimensional coordinates (x/a and z/b) of the base and lateral
surface of the chamber for a/b = 0.5 and various values of A; and A; (A; = A; = 1.0 and A; = 0.3, Ay =0.7)
and @ = 0.1, 0.5, 1.0. For a/b = 0.5 and fixed values of o and A; (i = 1, 3) the local resolving absorptivity
AM;j, V) of the volume V of the media depends weakly on the nondimensional coordinate x/a and increases
both as the coefficient of volume absorption o increases and as the degree of blackness of the base (Fig. 1,
I) decreases. For A; = Aj the local resolving absorptivity of the medium A(M,, V) has its greatest value
for the point M, € F'y with nondimensional coordinate z/b = 0.5. For A; = A; the maximum of A (M,, V) is
displaced towards points on the lateral surface nearer the base with the lower degree of blackness (in this
case towards the base Fy, since Ry > R;) (Fig. 1, II). Such a displacement is easily explained by the fact
that the local resolvingabsorptivity % (Mj, V) of the volume V of the medium, as distinct from the proper
local absorptivity, takes into account the fact that there may be absorptions associated with repeated re-
flections at the boundary [4].

The results of the numerical calculations of the local energy characteristics of the radiation for
given values of the parameters a/b = 0.5, Ores,o =0, Ay =A3 =1.0, A; =0.3and Ay = 0.7, 64 =1.05 for
various values of the coefficient of volume absorption (« = 0.1, 0.5, 1.0) are shown on Fig. 2. When ¢ is
constant the local nondimensional density of the hemispherical resulting radiation of the bases 6 yeg(M;)
and ¢ pog(M;) changes little. For given 8y =1.05, as the coefficient of volume absorption o increases
fres(My) increases, while 6 oq(M;) decreases in absolute magnitude (Fig. 2, left). As the degree of black-
ness of the bases increases 6 poq(M;) and 6 g (M) increase in modulus.

The distribution of the nondimensional temperature factor g (M,) over the lateral surface (the lining)
varies considerably (Fig. 2, right). The nondimensional temperature factor 6 (M,) decreases in the modulus
bothwithincreasein the coefficient of volume absorption o and with decrease in the degree of blackness of
the bases.

The Solution of the Mixed Two-Dimensional Problem of Radiative Heat Transfer in a Radiating System
Consisting of Two Concentric Grey Cylinders Divided by an Absorbing Medium. The radiating system
consists of a pair of concentric grey (0 < A;, A, < 1) infinite cylinders divided by a homogeneous and




TABLE 1. The Average Characteristics of the Radiation of Co-
axial Infinite Cylinders (r;/ry = 0.5) as a Function of the Absorp-
tion of the Medium

|
&% ’ Viz Coz ‘ Wye W 1 AsV) 1 A=) I el'eS,l 0.
0,1 I 0,922 0,342 1,560 0,693 I 0,423 0,375 l 0,089 ] 0,014
0,5 0,690 0,078 0,789 0,196 0,782 0,685 | 0,499 0,423
1,0 0,492 0,016 0,512 0,061 0,899 0,795 [ 0,635 i 0,560

isothermal absorbing medium with temperature T;. It is assumed that the temperature T, of the medium
is higher than the temperature T, of the inner cylinder (T3 > Ty), and that the surface of the surrounding
cylinder is nonadiabatic (6 peg, s # 0). It is required to determine the density of the hemispherical re-
sulting radiation ¢ res, 1 of the inner cylinder and the temperature T, of the surrounding cylinder.

The solution of this problem is given by the following nondimensional computational expressions [4]:

Eres, 1

— = Al [%1 (V) - eres, 21?12] ’> (15)

Bres, 1=
31
T4—T4 /1
8, = ﬁ =W (V) — (7 _|_1P22) Bres,zs (16)

2 /
where %; (V) is the resolving absorptivity of the medium (i =1, 2),

Eres,z _ Fres,»
Ex 0, (T5—T4) -

eres 2=

The surface of the inner cylinder is not concave and so ¥y; = 0, A{ = Ay, R{ =Ry, ¥, = ¥1 and the com-
putational expressions for %(V) and ¥;,, ¥y,, obtained in [4] can be simplified:

g, o Vb oy Volbant Ributy) (17
12 l— Rﬂpmw;l ’ i I — Rﬂpmwél ’
A, ' Ay by + 9 )
AV =1 — - 11221', QIV:I—l 21 21,22 18
1( ) 1 . Rl\'hz‘l?gl 2( ) 14_ Rﬂl)m‘l’gl ’ ( )

where v, =1/ (1 — U99)5 Uy = Y1/ (1 — P39).

The generalized average angular radiation coefficients are determined by the approximate method
of Mikk [5, 6]. The generalized average and resolving angular radiation coefficients (for r;/r, = 0.5),
and the resolving absorptivity of the medium (for A; = 0.8) were calculated numerically for various ab-
sorptions of the medium (o = 0.1, 0.5, 1.0).

H 6ypeg,1 > 0, thenW (V) — T30 peg o > 0 implies 6 peg 5 <A 1(V)/ ¥y, from which the values of 6 yqq
are to be chosen since otherwise the inner cylinder becomes a radiation source.

The results of the numerical calculations of the radiation characteristics (to calculate 6 rgg 1 and 9,
we took 8 peg,y = 0.2, Ay =0.9) for various values of the coefficient of volume absorption (¢ = 0.1, 0.5, 1.0)
are given in Table 1 from which it follows that as ¢ increases the resolving absorptivity (V) of the volume
V of the medium increases. If the difference between the temperature of the medium T, and that of the
inner cylinder T, is constant an increase in the absorption o of the medium is accompanied by an increase
in the temperature T, of the radiator (the surrounding cylinder) and hence by an increase in the density of
the hemispherical resulting radiation g peg, 1 of the inner cylinder.

NOTATION
Aj is the average coefficient of absorption (degree of blackness) of the surface Fy;
o is the Stefan— Boltzmann constant;
o is the coefficient of volume absorption of the medium;
A(Mj, V), ¥{(V) are the resolving local and average absorptivity of the medium;

y(Myi, Fio, ¥My, Fy) are the generalized local geometric and resolving angular radiation coefficients
of the elementary surface dFj at the point M; on the surface Fy;
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Piks ¥ik are the generalized average geometrical and resolving angular radiation coefficients
of the surface Fj on the surface Fy;

OresMi), Ores,i are the nondimensional local and average densities of the resulting radiation;

6 (M,), 6 are the nondimensional local and average temperature factors.
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